Electron Energy Loss Spectroscopy

R. K. Zheng

School of Physics and Australian Centre for Microscopy & Microanalysis, The University of Sydney, Sydney, NSW 2006, Australia

Electron energy loss spectroscopy (EELS) is able to provide information on elemental concentration, crystal structure, electronic structure, and chemistry of materials at very high spatial resolution [1]. It has been widely applied to and will play a more significant role in the research of advanced materials [2]. This chapter will review the physics, instrumentation, and applications of EELS, organized as follows:

1. Introduction of EELS.
2. Physics of EELS, covering (1) Electronic Structure of Atoms and Solids; (2) Electron-Matter Interactions; (3) Elastic Scattering; (4) Inelastic Scattering; (5) Single, Plural, and Multiple Scattering; (6) Formulation of Scattering.
3. Instrumentation and Experimental Aspects of EELS, covering (1) Instrumentation of EELS; (2) Experimental Parameters; (3) Specimen Aspects; (4) Detector Backgrounds.
4. Processing of EELS Spectra, covering (1) Components of a EELS Spectrum; (2) Removal of Background; (3) Extraction of Zero-Loss Peak; (4) Removal of Plural Scattering.
5. Quantification of EELS Spectrum, covering (1) Specimen Thickness; (2) Plasmon Peak; (3) Surface Plasmon Peak; (4) Interband Transition Peaks; (5) Elemental Analysis of Core-loss Edges; (6) Energy Loss Near Edge Structure; (7) Extended Energy Loss Fine Structure; (8) Simulation of EELS Spectrum.
6. EELS Imaging, covering (1) Energy Filtered Transmission Electron Microscopy; (2) Energy Filtered Imaging, (3) Energy Filtered Diffraction; (4) EFTEM Spectrum Imaging; (5) STEM Spectrum Imaging
7. Applications to Diluted Magnetic Semiconductors (DMS), including (1) introduction of DMS; (2) Experimentals; (3) Results and Discussion; (4) Conclusion and Outlook.
8. Comparison with Other Techniques and Conclusion

Keywords Electron Energy Loss Spectroscopy; Diluted Magnetic Semiconductors